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On a non-linear theory of thin jets. Part 1 
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Graduate Center, Farmingdale, New York 

(Received 21 October 1965 and in revised fonn 19 September 1967) 

The injection of a two-dimensional jet into a uniform stream is considered, the 
fluids being assumed inviscid and incompressible. When the total head of the 
jet is much larger than that of the uniform flow, the motion is characterized by 
two disparate length scales, and uniformly valid asymptotic solutions can be 
found by the method of matched expansions. Inner and outer expansions are 
developed for the jet and the external flow. The first-order outer solution in the 
jet is the usual thin jet approximation, which fails in the neighbourhood of the 
jet exit except for 90" injection, when it is uniformly valid. The basic non- 
linearity introduced by the pressure condition along the vortex sheet separating 
the jet from the external flow appears as a non-linear boundary condition for the 
&st-order outer solution in the external flow. A novel feature of the analysis is 
the necessity of imposing a logarithmic singularity as an 'inner' boundary 
condition for the outer solution in the external flow. The &st-order fluid speed 
and streamline deflection angle are shown to be given correctly to O( 1) uniformly 
in the external flow (for all injection angles) by the first-order outer solution. 

1. Introduction 
We will consider a jet of total head H ,  issuing from an infinite plate into a 

uniform flow of lower total head H ,  (see figure la). The fluid will be assumed 
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inviscid and incompressible, and the region to leeward of the jet will be treated 
as a stagnant wake with constant pressure pm equal to that of the undisturbed 
stream. Two-dimensional, steady, irrotational solutions of Euler's equations 
will be sought, but due to the difference in total heads, vortex sheets must separ- 
ate the jet from the external flow ifthe stai ic pressure is to be continuous through- 
out the fluid. Across the jet opening OA, the angle of injection - a is fixed, and 
at large distances from the origin all motion will be assumed to be directed in the 
positive %direction. 

Perhaps the main difficulty in studying such flows is the non-linear boundary 
condition on the pressure which must be applied along a vortex sheet. Classical 
methods usually assume that the total head of the jet and the external flow are 
equal and in those cases the flow can be represented by a single complex velocity 
potential. However, problems of current engineering interest (e.g. VTOL 
aircraft, ground-effect machines, and jet-flapped wings) involve a large difference 
in total heads and to account properly for the jet free-stream interaction the 
basic non-linearity of the flow must be taken into account. In  this paper the 
method of matched expansions is used to obtain uniformly valid asymptotic 
solutions in the jet and the external flow when H,/H, -+ co. 

Taylor (1954) considered this problem for 90" injection and obtained a rough 
theoretical estimate for the shape of the jet using an approximate analysis. He 
pointed out that due to viscous spreading the jet would fill a wedge of nearly 
40" and any experimental verification of theoretical results would have to be 
made close to the jet exit. I n  addition, the flow is very unstable and eddies would 
be formed in the (assumed) stagnant region behind the jet. However, since 
problems involving adjacent regions of different total heads occur frequently 
in nature and are inherently non-linear, their study is worthwhile and important 
in spite of these idealizations. 

In  some earlier work Ackerberg & Pal (1968) [hereafter referred to as A-PI 
studied this problem assuming that the ratio of the jet thickness d to its radius 
of curvature a would be small everywhere when H ,  9 H,. Using a thin jet ap- 
proximation (see Preston 1954; Spence 1956) which relates the fluid speed inside 
the jet to its curvature, they derived a non-linear potential problem for the 
external flow which was solved numerically for 90" injection using a variational 
principle and a variant of the Ritz-Galerkin method. Ackerberg noted that the 
thin jet approximation would not satisfy the exact boundary condition at the 
jet exit except in the case of normal injection. This observation motivated this 
study which was to determine the regions of validity of the thin jet approxima- 
tion and the solution of the aforementioned potential problem. The relationship 
between the physically imposable condition H,/H, > 1 and the assumption 
d / R  < 1 was clarified, and the two shown to be equivalent if R is the radius of 
curvature of the jet centreline. 

The identification of this problem as one involving a singular perturbation 
follows from an intuitive argument. Consider a point inside the jet at a fixed 
distance of O(d,) from the jet opening (see figure 1 b, region 111). When H J H ,  -+ 00, 

one expects the flow inclination at this point to  approach the injection angle - a. 
This limit will not be uniform at large distances (to be defined shortly) from the 



On a non-linear theory of thin jets. Part 1 585 

jet exit where both flows will be undeflected with respect to the uniform stream. 
Likewise, at  a point in the adjacent external flow (region IV),  the same limit 
must result in the flow in a corner of angle (n - a) ,  which also will be non-uniform 

at large distances. This non-uniform behaviour can be taken into account by 
finding solutions based on a length scale which is characteristic of the flow at 
large distances. These solutions must satisfy boundary conditions at infinity 
and will be required to merge with the solutions valid near the jet exit. 

The length L which characterizes the flow at large distances can be deduced 
from a simple heuristic argument. Denote the jet's width and density, and the 
speed along the free streamline AB by d ,  p 1  and qml, respectively, and let L be 
interpreted as the order of the length the jet must penetrate the external flow 
t o  obtain a change of O(1) in the angular direction of the jet. Using an injection 
angle of 90" for simplicity, we note that as a result of the jet free-stream inter- 
action over the distance L, the jet gains horizontal momentum of O(p1dq2,,) 
per unit time per unit breadth. This must equal the horizontal component of 
the pressure forces acting on the jet boundaries which will be of O[(H,-p,)L] 
per unit breadth.? Therefore, using Bernoulli's principle, we obtain : 

( H , - P m ) L  = *PZY2,ZL = O(p,dq2,,), (1.1) 

and Lld = O(PlY2,1/P,Y2,2). (1-2) 

Iu1 = P2Q:zlP14:1+0, 

Thus, the outer length scale is much larger than the inner one when 

and solutions based on this scale (valid in regions I and I1 of figure l b )  will be 
referred to as outer solutions. 

In  $3, a first-order outer solution is obtained in the jet which is equivalent to 
the thin jet approximation. It is shown that when a 4= +i- this solution will not 
satisfy t,he boundary condition at the jet exit and an inner solution is necessary 
to elimiriate this non-uniformity. In  $ 4, the outer solution in the jet is combined 

t We have assumed that the pressure along OC is equal to the stagnation pressure of 
the external flow. Since this would tend to make the jet turn faster, L might be under- 
estimated; but it is in fact given correctly by (1.2). 
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with Bernoulli’s equation and a curvature condition to derive a non-linear 
boundary condition along the vortex sheet OC for the first-order outer solution in 
the adjacent external flow. This boundary condition is equivalent to the one 
derived by Taylor (1954)  in a different way. The first-order outer solution in the 
external flow satisfies the non-linear potential problem first obtained by A-P. 
To avoid a trivial solution, which in this case corresponds to a uniform flow, a 
singularity must be imposed as an inner boundary condition. This ensures the 
turning of the external flow through an angle --a near the jet exit. Since this 
solution satisfies the boundary conditions which would be imposed on the exact 
solution (except possibly where the thin jet approximation fails), it is assumed 
(and verified a posteriori) to be uniformly valid to O( 1 )  in the external flow. With 
a method similar to one used by Clarke (1965)  for the flow over a waterfall, an 
inner solution is constructed in the jet in $5 using conformal mapping. Off-hand, 
this solution would be expected to modify the first-order outer solution in the 
external flow (which was assumed to be uniformly valid) through +he boundary 
condition along OC. However, the modification only affects the curvature which 
is O(pJ and not the speed and deflexion which are of O( 1 ) .  A potential problem 
is formulated in $ 6  for an inner solution in the external flow which corrects 
the streamline curvature. Finally in $ 7, the results of this analysis are discussed 
and summarized. 

2. Mathematical formulation 
Introduce a co-ordinate system X = X+@, with origin at  0 (see figure l a ) .  

Using the complex velocity potential W = $ + i$, the complex velocity in the 
usual notation is given by 

Dimensional variables will be denoted by bars and, when necessary, variables for 
the jet and the external flow will be distinguished by the subscripts 1 and 8,  
respectively, to  avoid confusion. Non-dimensionalize the co-ordinates, the 
complex velocity potentials, and the speeds in the following ways : 

dw/& = - iij = ge-io. 

xi = (qmi/m)zi, wi = q m ,  qi = qi /qmi, (i = 1 , 2 ) ,  (2 .1 )  

where m is the volumetric flow rate per unit breadth in the jet and qWi (i = 1 , 2 )  
are the speeds at an infinite distance from the jet exit. In  this notation the dimen- 
sionless complex velocities are 

dw,/dzi = ui-ivi = qze-iei (i = 1 , 2 ) .  (2 .2)  

The flow region in the x-plane will be mapped on to the w-plane as shown in 
figure 2.  The vortex sheet along OC requires the use of two velocity potentials, 
and the abscissa in the w-plane has been labelled accordingly. Thus, inside the 

0 < $ < 1  and $cota<q5,<co; ( 2 . 3 ~ )  jet 

and in the external flow 

$ < O  and - 0 o < q 5 ~ < 0 0 .  (2 .3b )  

Since the locations of the streamlines OC and AB in the physical plane are not 
known a priori, it  is convenient to formulate this problem in the w-plane using 
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the logarithm of the complex velocity, 

r ( w )  = In (dwldz) = Q($, $) - W$, $)- (2.4) 

By the usual arguments the real and imaginary parts of r(w) satisfy the Cauchy- 
Riemann equations and are conjugate harmonic functions in each region. Thus, 

aQ/a$ = -aela$, ( 2 . 5 ~ )  

aQIa$ = aela$, ( 2 . 5 b )  

and VZQ = 0, V28 = 0, (2.6) 

where V2 = az/a$-" + P/a$z .  Henceforth a subscript on the dependent variables 
Q and 8 will imply the appropriate independent variables (#,$) which will not 
be subscripted. 

"I s,=o 

FIGURE 2 .  wl- and w,-planes. 

Boundary conditions 

Along OA and DO the deflexion is fixed. Thus, 

8,= -a for $=$cots (0 < $ < l), (2.7a) 

and 8, = 0 for -MI G $ < 0 ($= 0) .  (2 .7b)  

Since it will be most convenient to formulate the boundary value problems in 
terms of Q, (2 .7u,  b )  will be expressed in terms of Q using the Cauchy-Riemann 
equations. Both (3 .7u,b)  may be written 

where the gradient is with respect to (4, $) and t^ is a unit vector tangent to DO 
or OA. Thus we may write (2.7u,b) 

-sinaaQ,/a$,+ cosaaQ,/a$ = 0 for $ = $cota, 0 < $ < 1, (2.9) 

&ve = 0, (2.8) 

and aQ,ja$= 0 for --co < $ < 0, $=  0. (2.10) 

On crossing OC and AB the static pressure must be continuous. The fixed 
wake pressure along AB requires that the speed just inside the jet be constant, 
and its value must be qml. Therefore, 

Q1= 0 for cota < $ < MI, ($= I), (2.11) 

and along OC jil = j i2 for $ = 0, (2.12) 
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where pl and p 2  must be evaluated a t  the same point in the %plane. Using 
Bernoulli’s principle, (2.12) may be written 

p l g ~ - p 2 p ~  = 2(Hl-H,) for @ = 0. (2.13) 

At an infinite distance downstream where qi+qooi, (2.13) becomes 

(H,-H2)/4P,q2,1 = 1 -PzLr:Z/PlP:l = 1 -P1. (2.14) 

Substituting qi/qmi = eQi and (2.14) into (2.13) yields 

e2Q1 l+$l(u)-Ple 2Q 4+qqd = 1-Pl on @ = 0, (2.15) 

where > 0 and q 5 2 ( ~ )  > 0 refer to the same point on OC in the %plane with 
OC being given by X = X(v), 

To guarantee that the fluid in the jet and the external flow remain contiguous, 
the deflexion on crossing the streamline OC must be continuous. Therefore, 
using the previous notation 

(2.16 a)  

Here it will also be useful to consider the continuity of the curvature l /R = %/a3 
on crossing OC. Noting that ae/% = ijaO/a$, where S denotes arc-length along 
a streamline and ij = 

= Tj(g), v being a parameter. 

4[41(4? 01 = eZ[q52(4 ,01 .  

we obtain 

At  large distances from the jet opening we require that the flow be undeflected 
and uniform in each region, i.e. 

and 

(2.17a) 

(2.17b) 

Finally, a stagnation point must be placed at point 0 in the external flow to 
ensure the turning of the fluid through an angle - a. This requires 

01 

97 
r2 -lneniw2 as w2-+0, (2.18) 

where 0 > arg zu, > - 97. It is believed that (2.5)-(2.18) are sufficient to determine 
the two functions rl and r2. However, the non-linear boundary conditions 
(2.15) and (2.16), which must be applied along OC whose position is unknown, 
make an exact treatment too difficult. Fortunately in most practical situations 
solutions are required when the total head of the jet is much larger than that of 
the external stream. In these cases asymptotic solutions can be found for p1 -+ 0. 

3. The outer solution in the jet 
When d/El < 1, it  is expected that variations along the jet in the outer region 

(figure 1 b, region I) will be much smaller than those across it, i.e. a/aq5, < a/a$. 
This behaviour may be taken into account explicitly by altering the scale of 
q51. A closely related method is used in shallow water theory (Stoker 1957, 

t In most practical cases ( 2 . 1 6 ~ ~ )  and (2.16b) will be equivalent. 
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pp. 348-51), and it will be evident that the thin jet approximation represents 
the first term of an outer expansion in the terminology of singular perturbations. 

In  place of g1 introduce the new independent variable 

= P l h  (3 .1)  

which will remain of O( 1 )  in the outer region. To show that this scaling is correct, 
estimate ?jl = in the outer region where al = O(p,,) and 3 = O(L)  ; we 
find = O(Lp,,/m) = O( l ipl) .? The thin jet approximation results formally by 
seeking solutions of the form 

Q1 N ~ 1 & ^ ( $ , 9 ) + ~ ( ~ 1 ) 7  ( 3 . 2 a )  

and 81 - & w + o ( l ) ,  (3 .2b)  

where - is used to denote:he asymptotic nature of these solutions valid for 
small p1 ; it is implied that Q and 6 remain of O( 1 )  in the region where 4 and 9 
are of O(1). Using (3 .2a ,b)  we find that the non-dimensional curvature d / R l  
is of O(,ul) and this agrees qualitatively with the assumption of a thin jet.$ 

Substituting (3 .2a ,b)  into (2 .5a ,  b )  which have been transformed to the 
variables ($,$), we find on equating the coefficients of each power of ,ul to zero 

a@a@ = 0,  (3 .3a )  

and a&a$ = a&$. (3 .3b )  

&$>@) &$). (3 .4)  

(3 .5)  

Equation (3 .3a )  yields the expected result that # does not vary across the jet 
thickness to first order. Thus, 

Using this result in (3 .3b)  gives 

a6 9) = 90’(#) + a(#), 

where a($) is an arbitrary function and the prime has been used to denote 
differentiation. Applying the boundary condition (2 .11)  yields 

and 

The unknown function 6($) will be determined by applying the boundary 
conditions (2.15) and (2 .16b)  which ensure the continuity of the static pressure 
and curvature on crossing 9 = 0. Equation (3 .7)  is related to the more usual 
form of the thin jet approximation in the appendix $1. 

It is of interest to try to impose the boundary condition (2 .9)  along OA assum- 
ing that (3 .2a ,b)  may be used at  the jet exit. Transforming (2 .9)  to the variables 

In the jet m = O(dqml). 

3 Equation (3 .2a)  also implies that the jet thickness remains constant to first order, i.e. 

J: 1 

0 0 
d= Sm@/q1=(m/~aJ 1 e-Q1d@= (m/nm1) exp{-pld+ ... }d@=m/q,,+o(l). 

The higher-order terms in these expansions (and others which will be given later) are 
likely to  involve fractional powers and logarithms of pr Here we will be primarily concerned 
with the firsborder solutions. 
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($,$) and substituting (3.2a), we find on equating the coefficient of p l  to zero, 

coscta(jia$ = o for $ = p l $ C O t a ,  (0 G @ G 1). (3.8) 

&?I($) = o for $=,ul$cota, (0 G $ < 11, (3.9) 

For ct =k in this requires 

which can only be satisfied if &?($) = - a in accordance with (2.7 a). This, however, 
violates the boundary condition at infinity ( 2 . 1 7 ~ ) .  Such a paradox is not sur- 
prising since the expansions (3.2a)b) are valid for $ = 0(1) ,  and in the ($,$)- 
plane (3.8) is applied where $ = O(pl) ,  i.e. when $I = O(1). To satisfy this boun- 
dary condition an inner expansion based on the independent variables 
must be used. 

When a = 7712 (3.8) is satisfied, and on equating the coefficient of & to zero 

(3.10) 
we obtain 

which requires B”(0) = 0. (3.11) 

It is shown in the appendix 8 2, that (3.11) is indeed satisfied. Thus, it is possible 
to use the thin jet approximation up to the jet opening only when ct = &r. 

aQ^la$= o for $ =  0, (0 G 1~. G 11, 

4. The outer solution in the external flow 
The correct scaling for the velocity potential in the outer region of the ex- 

ternal flow can be deduced as in § 3. Noting that in this region ij2 = O(qm2) and 
I = O(L), we readily deduce r$2 = O(qrn2/qrnlpl). Therefore, introduce the non- 
dimensional parameter 

~2 = PzqrndP1Prnl= (qrnllqmz)/hl,t (4.1) 

and the scaled velocity potential 4 = llc2 $2. (4.2) 

In  this region where we expect Q2 and 8, to remain of O(1) it  is necessary to 
scale $ also ; otherwise, there would be no dependence on $to first order and this 
would not satisfy the boundary conditions. Thus, define 

$ = p 2 9  for $ 0, (4.3) 

( 4 . 4 ~ )  

(4.4b) 

8 and 0 satisfy the Cauchy-Riemann equations (2.5a)b) with ($,$) replaced by 

(6, $1 ; thus, v2$ = 0) 020 = 0) (4.5) 
where now V2 = a2/a@ + a2/a$2. 

Boundary conditions 
Transforming (2.10) we find 

a$ia$ = o for 6 < 0, fi = 0. (4.6) 

7 Throughout this paper it will be assumed that (p,/p,) = 0(1) ,  SO that plccp~. We will 
use p l  and p, as necessary to avoid writing (p2/pl).  
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Substituting ( 3 . 2 ~ )  and (4.4a) into (2.15), expanding for small p,, and equating 
the coefficient of p1 to zero yields 

2&$, 0) - exp {2&qT, 011 = - 1 for $, > 0. (4.7) 

28'($) + exp(20($,0)) = 1 for $,$ > 0. (4.8) 

Using (3.7) this may be written 

Transforming (2.16b) to the variables ($, $), substituting the expansions 
(3.2a,b) and (4.4a,b) and expanding for small pl, we find on using (4.1) and 
equating the largest coefficient of p,, to zero 

Eliminating 0' between (4.8) and (4.9) yields 

At  large distances (2.17b) requires 

@- to  as l i~ l+m,  (4.11) 
where 13 = p2w2. 

To complete the formulation of problems similar to that for 0, a matching 
condition is usually required when IGl + O .  If w+ denotes the stretched variable 
for the iilner solution in the external flow, the matching condition is obtained by 
letting Iw+I +co in the inner solution and afterward expressing what remains 
(neglecting exponentially small terms) in terms of 8. In most cases the remainder 
will involve positive powers of 8 so that 0 remains bounded at  8 = 0.f A har- 
monic function which is bounded at  iZ = 0 and satisfies (4.6), (4.10) and (4.11) 
is 0 = 0. This predicts q2 = qm2 everywhere, and usually such a trivial solution 
indicates improper scaling. If, however, the whole external flow is characterized 
by the single length L to lowest order, it  would be correct to apply the singular 
boundary condition (2.18) with w2 replaced by 8, i.e. 

This would ensure the turning of the external flow through the angle - a near 
the jet exit and the trivial solution would be avoided. Pal (1965) has proved that 
a solution satisfying (4.12) and the other boundary conditions exists and is 
unique. Since a solution may be found which satisfies all the boundary conditions 
of the exact formulation in 0 2 (except possibly for a small region adjacent to 
OC where the thin jet approximation fails), we expect this solution to be uni- 
formly valid to first order throughout the external flow. We now postulate this 
to be the case, and will show a posteriori that inner solutions in the jet and the 
external flow can be found in a consistent way. 

Some interesting deductions about 0 can be made from the boundary condi- 
tions without the benefit of the numerical solution obtained by A-P. Letting 
Q = ,a, (4.10) may be written 

i/B = p(alJp6) = +(I - p 2 )  for $ = 0, $ > 0. (4.13) 

This shows that along OC the non-dimensional curvature and non-dimensional 
pressure are equal to first order as Taylor (1954) observed. If p exceeded unity 

t This assumes, of course, that the domains of validity of these solutions overlap. At 
this point there is no reason to  believe otherwise. 

&$) = exp {Q($, 011 ( a m @  for $ = o,$,$ > 0. (4.9) 

a@$ = a@a$ = - sinh a($, 0 )  for $ = 0, 6 > 0. (4.10) 

0 N (a/n) In 181 for G+O. (4.12) 
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along OC, the curvature would be negative and the jet would bend upstream, 
which is an unlikely physical result; in fact, Pal (1965) has proved that ij increases 
monotonically along OC from a zero-value at  0 to the unit value an infinite 
distance downstream. 

Formal asymptotic expansions for F (65) = 8 - i8 were found by A-P for I zZl+ 0 
and I$ ]+  co. For 1651 --f 0 the first few terms in this expansion are 

Asymptotic expansions of 
N 

a 
7T 

F(G) N -In(e"iu",)+ao+a,(e"iu",)i-(a~n)+a2(eni65)+ ... for 1651 - to ,  (4.14) 

where the at's are real and 0 > arg 65 2 - n. a,, and a2 cannot be determined by this 

(4.15) 

(4.16) 

where co and c2 are indeterminate by this formal procedure and 

c1 = -co/27T. (4.17) 

5. The inner solution in the jet 
The necessity of finding an inner solution in the jet was shown in $ 3  where i t  

was found that the thin jet approximation could not satisfy the boundary 
condition at  the jet exit unless a = in. In  the inner region do will be the charac- 
teristic length and to first order the jet is expected to remain undeflected. Since 
the increase in static pressure near 0 due to the stagnation of the external stream 
must be small compared to the total head of the jet when ,4 < 1, the velocity 
variation across the jet will be small; thus 4, N qml, and Q1 = o(1). Using these 
estimates, we easily find that (4,) $) are the natural co-ordinates in this region. 
Translating these ideas into mathematical form leads to the following expan- 
sions : 

Qi N ~ i Q * ( $ i , @ )  + o ( P ~ ) ,  ( 5 . 1 ~ )  

and 4 -a+lule*(41,$) + O ( P l ) J  ( 5 . l b )  

where Q* and 8" are conjugate harmonic functions which are related by the 
Cauchy-Riemann equations (2.5a, b). From ( 5 . 1 ~ )  b)  it is evident that the jet 
thickness remains constant ( = do)  to first order? and the non-dimensional cur- 
vature d/R, is again of O(p,); however, this last conclusion will require modifica- 
tion later on. 

Boundary conditions 

The condition ( 2 . 7 ~ )  at the jet exit requires 

O*(q5,,$) = 0 for q5, = $cota, (0 < $ < 1). (5.2) 

aQ*/an = 0 for q5, = $rota,  (0 < $ < l),  (5.3) 

Using (2.8) and the Cauchy-Riemann equations, this may be written 

t Assuming that the domain of validity of these solutions overlaps with that of the 
thin jet approximation, it is apparent that the jet thickness will remain constant to 
first order throughout its course. 
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where ajan denotes the derivative normal to the line OA. Along the free stream- 
line AB (2.11) requires 

Q*(& 1) = 0 for cot a < g1 < a. (5.4) 

The static pressure must be continuous on crossing OC. Since ? has been 
assumed to be a uniformly valid first approximation in the external flow, we may 
use it to compute the pressure along OC. However, when 6 was introduced as a 
natural variable in the external flow it was assumed to remain of O(1) when 
X 2  = O ( L ) .  Near the jet exit where Z2 = O(d,), we will have fi = o(1); thus, it is 
sufficient to use the asymptotic expansion (4.14) to compute the pressure 
correctly to first order via the velocity and Bernoulli’s equation. To obtain an 
expression for Q, substitute (4.14) into (2.4) and integrate, choosing 6 = 0 when 

(5 .5 )  
z2 = 0. We find 

Substituting (5.5) into (4.14) yields for 6 + 0  

(5 .6)  

(5.7) 

6 cc (r’CzZ2)n/(n-a). 

Q = e* cc I 6 l a l n  cc (p2z2)a1(n-a). 

p = e6 = O[pla/(n-a) 1 = 0 ( 1 ) 7  

Near the jet exit X 2  = O(d,), and p2x2 = (p2qa2/m)Z2 = O(pl) .  Thus, 

and from Bernoulli’s equation the pressure along OC in this region is constant to 
first order and equal to the stagnation pressure of the external stream. Sub- 
stituting ( 5 . 1 ~ ~ )  and (4.4a), using (5.7), into (2.15), and expanding for pl+O 

(5.8) 
yields 

1+2p1Q*+0(p1)= 1-pl on  $ = O , + , > O .  

Therefore, &*(q51,0) = - +  for $1 > 0. (5.9) 

This boundary condition, which is crucial for obtaining the inner solutions in the 
jet and the external flow, depends only on the order relation (5.7) and not on the 
detailed analytic behaviour of F .  

The boundary conditions (5.3)) (5.4)) (5.9) and a boundedness condition at 
infinity are sufficient to determine a harmonic function Q* in the strip COAB. 
8*, the conjugate harmonic function, may be determined from Q* except for an 
arbitrary constant. 

To solve for Q*, map the strip COAB in figure 3, on to the upper half of the 
6-plane in figure 4 using a Schwarz-Christoffel transformation. This result is 

(5.10) 

where Im 6 > 0 and the path of integration is chosen so that Imt  > 0 with 
0 < arg (t - 1)) arg (t + 1) < 77. When a = $77, (5.10) can be evaluated exactly to 

(5.11) 
yield 

w1 = -In [<+ ( 6 2 -  I)+] for a = in-, 

where 0 < arg (6- l ) ,  arg (6+ 1) > 77. The mapping (5.11) can also be used to 
map the s-plane (figure 5) on to the 6-plane, i.e. 

1 

77 

(5.12) 
1 

s = c + i S  = -In[6+(62-1)*]. 
77 
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The solution for Q* can be found by inspection in the s-plane ; it  is 

Q*((r,6) = -&(1-8) = -&Re( l+is ) .  

Thus, the solution for I?* = Q* - iB* is given by 

r*(g) = - + In [c+ ( 5 2 -  1)41), 
7I 

and an imaginary constant has been chosen to satisfy (5.2). 

FIGURE 3. w,-plane. 

B A 0 C 
I 

I 

- 1  + 1  

(5.13) 

(5.14) 

FIGURE 4. 5-plane. 

FIGURE 5. s-plane. 
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The behaviour of F*(w1) for (wll -+a is readily found. From (5.10) 

where 
1 -u 1 du 

n 0 l + u  1 - u  u 
c = 'jl( (-) --I)-. (5.16) 

Inverting (5.15) for C(wl) we find 

C N en(wi-C)+ o(e-"(h-c)) as Iw1l -+a* (5.17) 

Using (5.17) in (5.14) which has been expanded for large 6 yields 

r*(w,) N - (4) [1+ (i/n) In 2 + i(wl - C) + O(e-2TCl)]. (5.18) 

Therefore, Q* N - (+) (I -@) as IWi[+m, (5.19) 

and 8" N (+)[(l/n)ln2-C+$,] as lwll+co; (5.20) 

note that the error in these equations is exponentially small. When (5.20) is 
substituted in (5.1 b )  and the result expressed in terms of the outer variable $ we 

8, N - a + (*I$+ (+pl) [(1/7r)In2 - C]. (5.21) 
find 

This must be the asymptotic behaviour of (3.2b) when $-+ 0. Therefore, unless 
C = (l/7r)ln2 (which is the case for 01 = in) it is likely that the next term in 
(3 .2b)  is of O(pl ) .  

Streamline curvature 

The curvature of any streamline to first order is given by 

d/&($,,$) = plRe (idr*/dw,) = plRe [ i (dr* /dC)  (dC/dw,)] (5.22) 

Near the point 0 where 6 z 1, (5.10) may be solved for C(wl), i.e. 

2a 

n-+a 
5- 1 = 2(aw1)"'"+-- (aw1)2n/a+ ..., 

where 0 < argwl < a. Substituting this result in (5.23) we obtain 

(5.24) 

d/&($,, @) N ( p l / 2 )  Re [ ( U W , ) ( " / ~ * ) - ~  + O(w 1 )(3n/2a)-1],  ( 5 .25 )  

and along OC where w1 = $1 

d/Rl ($1, 0 + ) = (p1/2) (a$,)(n/2+1 + . . . for $1 < 1. (5.26) 

Thus, the curvature of OC is zero, finite, or infinite at 0 depending on whether 
a < in, a = in, or u > in. For u > in, the thin jet approximation d/Rl < 1 
is not equivalent to the physically imposable condition pl+O if Rl is taken 
along OC where $1 = O ( , U ~ / ( ~ ~ - ~ ) ) .  For the equivalence t o  remain valid d/Rl 
should always be based on the jet centre line $ = O(1). For a = in, (5.11) and 
(5.14) yield r*(zo1) 2 - + ( l + i w l ) .  Using ( 5 . 2 2 ) ,  d / R l  = p1/2+o(pl) throughout 
the inner region of the jet. 

38-2 
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The asymptotic solution for I?* [see (5.18)] can be used to compute the first- 
order jet curvature for large q51. We find 

d/Rl  = &pl+o(,u1) for o 6 9 < 1. (5.27) 

Matching will require this result to  agree with the first-order curvature given 
by the thin jet approximation when $+O. Using (3 .2)  and (3.4) the curvature 
in the thin jet region is 

which does not vary across the jet to  first order; thus the first-order curvature 
when $+O can be computed using along OC for 430 . t  Expressing (4.13) in 
dimensional form and using (5.7) yields 

d / R 2  = +,ul + o(pJ for J = 0, $+o + . (5.28) 

The agreement between (5.27) and (5.28) is a strong indication that our method 
is correct. 

The important boundary condition (5.9) was derived from the requirement 
that the static pressure be continuous on crossing OC. The condition that the 
jet and the external flow remain contiguous along OC in this region is also 
satisfied to first order as can be seen from (4.14) wit,h $ = 0, 4 > 0, i.e. 

l J =  - a+O(I@ll-c"/",) == - a + O(P1). (5.29) 

Although the second term in (5.29) is of the same order as the second term in 
( 5 . l b ) ,  it  would be extremely fortuitous if these terms were equal all along OC 
because 8" does not depend on the details o f ?  as mentioned before. For this 
reason an inner solution will be required in the external flow to ensure the 
contiguity of the jet and the free stream to second order. 

Finally, a uniformly valid approximation to Q, can be obtained by combining 
Q̂  and Q* to form the composite series [see Van Dyke (1965)l: 

Wl = PI&$) + O(Pl), 

Q l ( h  9 7%) - PIE&$, 9) + Q*(h $) - &*(a, $)I + O f P d  - P1 [&$, 9) + &*(91, $1 + +(I -  911 + 4P1) 
for 0 6 $1,$ 6 o 0 , O  6 9 6 1. (5.30) 

6. The inner solution in the external flow 
Although ? will turn out to be a uniformly valid first approximation correct 

to O(1) in the external flow, there is no reason to expect that the streamline 
curva.ture computed from it (which depends on dF/dG) will also be uniformly 
valid to first order.$ In  the inner region ? will not, in general, give correct values 
for the streamline curvature, and to ensure the contiguity of the jet and the 
external flow to second order [cf. (5 . lb )  and (5.29)] an inner solution will be 
required. The inner solution must contain all terms of O(1) or larger which 

7 Since 8($) is unknown the jet curvature must be found by this roundabout method. 
The curvature computed in this way from f must agree with that of the, thin jet approxi- 
mation along OC because the boundary condition (2.166) guarantees this. 

$ A classical example which illustrates this behaviour is the Stjokes solution for the 
flow past a sphere. The velocity components are uniformly valid to 0(1), but the velocity 
derivatives at large distances are not. This prevented Whitehead from improving Stokes' 
result. 
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appear i n r  when 1Z22[ = O(d,). By inspection, these terms are the first two in the 
asymptotic expansion (4.14). Therefore, assume 

(6.1) 

where r+(w+) = Q+-iO+, and Q+ and 8+ are conjugate harmonic functions of 
($+,@+). The mixed notation (G,w+) is used in (6.1) because the relationship 

N 

r2 N (a/.) In (eniG) + a, +pl r+(w+) + o(pl), 

ff + =f(P+) 
* 9' o j  C 

n-cf 
1 

s+-:(#+ - $h+ cota) 
forjur+ / + w  

FIGURE 6. w+-plane. 

between W+ and w2 is unknown. If and Iw+I are of O( 1) when lwll = O(l) ,  it  
should be possible to find a 8+ which is equal to 8" along OC. We note that the 
first two terms of (6.1) satisfy the boundary conditions (2.7 6 )  and (2.18), and on 
applying (2.13), the boundary condition (5.9) is unchanged; thus, the inner 
solution in the jet is unaltered to O(pl)  by the inner solution in the external flow. 

= O(,ufl(n-a)) from 
(5.7), and S = O(d,) ; thus, 

To deduce the correct scaling in this region, note that 

$2 = O(q,,d,p~ic"-")/m) = O(pp+a)i(n-a) ) *  

Therefore, introduce the new variable 

(6.2) 

where 0 2 argw+ 2 - (.-a). Along OC where w2 = $2 = O(p~+ali[n-al 1 [see 
(5.5)] we will have W+ = $+ = O( 1). This transformation maps the lower half of 
the w2-plane onto the wedge-like region in the w+-plane shown in figure 6. 
Since (6.2) is a conformal transformation at every finite point except the origin, 

V2Q+ = 0 ,  V2O+ = 0, (6.3) 

where now V2 = a2/a@+2 + P/E+h+2. Hereafter it is easiest to formulate a boundary- 
value problem for Of. 

t The multiplicative factors of O( 1) are introduced for convenience later on. 
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Boundary conditions 

Along DO the deflexion is zero. Therefore, 

Of($+,++) = o for $+ = ++ cot a, ($+ 0). (6.4) 

@[$+(a),01 = 0*[$1(~),01 for $+(a), $1(a) > 07 (6.5) 

On crossing OC the deflexion must be continuous. Hence, from (2.16a) and (5.16) 

where OC is given parametrically by X = Z ( a ) , i j  = ?j(a). Along OC, w1 = $1 
and < is real and 1. Thus, (5.14) becomes 

where 6 is related to $1 through (5.10), i.e. 

Equations (6.6) and (6.7) may be written in the simpler form 

e * ( $ 1 7 ° )  =f($l) for $1 > O ,  (6.8) 

where f(q51) may be assumed to be known. To make (6.5) a useful boundary 
condition for O+, a relationship between $+ and $1 must be found. By equating 
differential arc-length along each side of OC we find 

Using (5 . la)  and (4.14) with 8 = 0, 

q1 = qml eaiQ*+. . . M qm1+ o( 1 1, (6.10a) 

( 6.1 0 b) and q2 = qm2 eaoqW + . . . . 
Substituting in (6.9), we obtain to first order after integrating and choosing 

- 

(6.11) 

Comparing this with (6.2) when $ = 0, q52 > 0, shows that to first order 

$+ = $1 on + =  0 for $+,q51 > 0. (6.12) 

Therefore, the boundary condition (6.5) may be written using (6.8) 

(6.13) 

Finally as lw+l +a, (6.1) must merge with the expansion of r when )GI + O .  
Since the first two terms of (6.1) are the same as those in (4.14), we require file+ 
to match with minus the imaginary part of the third term in (4.14),? i.e. 

,/.L~ Of - - Im {a1 (er%Z)1+/n)} for I w+ I +- 00. (6.14) 

t I t  has been assumed that higher order terms of (4.4b) wiII contribute terms of smaller 

N 

Of($+, 0) = f($+). 

order to 8+. 
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Using (6.2) to rewrite (6.14) in terms of W+ yields 

8+ N - Im {a, eao( 1 - [a/m]) ei(n-a)w+) 

N - a, eao( 1 - [a/m]) [$+sin ( m  - a)  + $+ cos (n - a)]  

N +($+- $+cot a)  for I w + ~  -+a, (6.15) 

where we have used (4.15). The absence of ,ul indicates that the expansion 
variables were chosen correctly. 

The boundary conditions (6.4), (6.13) and (6.15) are sufficient to determine a 
unique harmonic function which does not grow more rapidly than (6.15) as 
Jw+J +co. To see this more clearly, note that for $+ = 0, $++co, we may use 
(6.13) and (5.20) to find 

6+($+,0) =f($+) N &$++&([l/n]ln2-C) for $++co. (6.16) 

An asymptotic solution for 8+ when I w+] -+ co is given by 

1 e+($+, $+I +($+ - $+ cot a)  + ~ ([ l /m]  In 2 - C) (arg w+ + m - a)  
2(m - a)  

for lw+l+co. (6.17) 

It is easy to verify by inspection that (6.4), (6.15) and (6.16) are all satisfied by 
(6.17). Furthermore, since the right-hand side of (6.17) is harmonic, we may 
seek a new harmonic function for the difference between 8+ and the right-hand 
side of (6.17). This new function must satisfy (6.4), vanish at infinity and satisfy 
an inhomogeneous boundary condition along $+ = 0,  q5+ > 0. Such a Dirichlet 
problem may always be solved. Note that €J+ depends on f' only through the single 
constant a, in (6.2). 

In the special case a = +m, f($+) = +$+ (see p. 595) and 

e+(q+,$+) Q$+, (6.18) 

with r+(w+) --= -iiw+. (6.19) 

When (6.19) is inserted in (6.1), and the resulting equation expressed in terms of 
6 using (6.2), we obtain the first three terms in (4.14). Therefore, for a: = tn, 

may be used to compute the first-order streamline curvature correctly to 
O(p,) throughout the external flow. 

N 

7. Summary and conclusions 
Although no numerical results have been obtained in this paper (the reader is 

referred to the A-P paper for the numerical solution when a = &f), a number of 
interesting conclusions have been reached. On the assumption that ? is a uni- 
formly valid first-order solution correct to O(1) in the external flow, we have 
been able to formulate in a consistent way the boundary-value problems for the 
inner solutions in the jet and the external flow; in the case of the jet, an explicit 
solution was found using conformal mapping. The matching of various solutions 
in overlapping regions and along common boundaries leaves little doubt that 
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here. 
is uniformly valid as assumed. A summary of the important results is given 

The jet thickness remains constant ( =do) to first order throughout its course. 
For 0 < a < rr, the ratio of the jet thickness to the radius of curvature of the 

jet centreline [$ = O(l)]  is of O(pl )  uniformly to first order. For a > in, the 
curvature (non-dimensionalized with respect to do) of the vortex sheet OC is 
infinite (but integrable) at  distances of ~ [ d , , p ~ ~ ~ @ - ~ ) ]  from the jet exit when 

For a + in, Q̂  (of the thin jet approximation) fails to give the correct speed 
distribution inside the jet (0 < $ < 1) at distances of O(d,) from the jet exit. 
An important point is that (3.7) does give the correct limit when $ 3 0  along 
$ = 0, i.e. Q^+ - 4 in agreement with the boundary condition (5.9). Thus, Q 
is valid all along OC (and also along the free streamline AB) to first order, but 
not uniformly in the interior. This accounts for the validity of I; in the region 
adjacent to that where the thin jet approximation fails. The streamline deflexion 
8 is uniformly valid for all a, but cannot be used to determine the streamline 
curvature in the jet correctly to O(pl )  at distances of Ofdo) from the jet exit 
An inner solution must be used for the curvature in these cases. 

For a 3 in, the thin jet approximation is uniformly valid to first order through- 
out the jet and can beused to compute the streamline curvature to O(pl )  uniformly. 

For 0 < a < rr, ? is a uniformly valid first-order solution correct to O(1) in 
the external flow. When a =# in, the first-order streamline curvature given by 
F is incorrect at  distances of O(do) from the jet exit, and an inner solution is 
necessary to correct it to O(pl ) .  For cc = in, I? gives the streamline curvature 
correctly to O ( p l )  uniformly. 

The pressure at distances of O(d,) from the jet exit in the external flow is 
constant to first order and equal to the stagnation pressure of the external flow. 

Most results given here would be drastically altered if real fluids with small 
viscosities had been considered, and this must not be overlooked. Near the jet 
exit, however, where the cumulative effects of viscosity will be small, some ex- 
perimental verification of these results may be possible. 
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Appendix 
1. The thin jet approximation 

From ( 3 . 2 ~ ~ )  and (3.7)) the first-order speed distribution inside the jet is 
h A 

ql/qml = eQ1=exp{plQ+ ...} z l+pc,&+ ... z 1+p18’($)[$-1]. (Al . l )  

1/R, = ~l(W4%) (iu,qm,/m)$’($) PlQ’($)/dO, (A1.2) 

Noting that the first-order curvature of any streamline in the jet is 
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we obtain on eliminating plo' between (A 1.1) and (A 1.2) 

41/qm1 = 1 + (dO/R,) [4- 11. (A1.3) 

Along a streamline in the jet, 4, = a$/aE, where E is the distance measured normal 
to  the streamlines in the direction of $ increasing. Therefore, to first order 

a$/& M qml. (A1.4) 

On integrating and choosing $ = 0 when n = 0, we obtain 

4 = Eq,,/m z ./do for 0 < E < do. 
Substituting for qk in (A1.3), 

(A1.5) 

- n-d l-do/Rl (Al.6) 
gl/qml = 1 +-2 M when d o / R l  < 1. 

R, l-n/R1 
This is the usual form of the thin jet approximation. 

2. Proof that o"(0) = 0 for a = &r 

On crossing OC in the outer region, the deflexion must be continuous. Using 
(3.16a), (3.2b), (3.4) and (4.4b), we obtain to first order 

Qt$(a)l = &%7)7 01. (A3.1) 

Since Q̂  and 0 are valid all along OC, we may relate $ and 6 by equating arc- 
length on each side [see (6.9)]. The result will be the same as (6.11) with CL = *7r, 

i.e. $ =  2e-a0$4+ .... for $,$ > 0. (A2.2) 

Differentiate both sides of (A2.1) with respect to $ using (4.10) and (A2.2) to 
obtain 

(A2.3) 

where the last step depends on the result obtained from (4.14), 

Q ( ~ , o )  = $Inq5+ao+O($) for $+o .  (A2.4) 

Differentiate (A2.3) with respect to 6 
(A2.5) 

which establishes the result. 
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